7003全讯白菜网

博士生导师

个人信息
  • 姓名:赵宪钟
  • 部门:基础数学系
  • 职称:教授
  • 荣誉:博士生导师
  • 电子邮件:zhaoxz@nwu.edu.cn
  • 研究方向:代数学和理论计算机科学

 

个人简介

赵宪钟教授(白菜网所有网站大全博士生导师) 1961年10月生于陕西省澄城县1982 年1月在陕西师范大学本科毕业并留校任助教; 1985年9月至1988年6月在白菜网所有网站大全攻读硕士学位,后即在白菜网所有网站大全任教至今,长期从事代数学与理论计算机科学的教学与研究。其间,于1992年9月至1993年7月在兰州大学数学系访问; 2000年6月在中山大学获得博士学位(半群代数理论方向);2003年被遴选为白菜网所有网站大全基础数学博士授权点的首批博士生导师;2002年6月至2009年5月曾经担任白菜网所有网站大全数学系副系主任(主管科研与研究生教育工作)。2009年112014年12月兼任江西师范大学特聘教授。现任美国杂志《数学评论》的评论员和杂志《纯粹与应用数学》的编委。

赵宪钟80年代以来长期从事代数学与理论机算计科学的教学与研究。他在群、半群、半环和Tropical代数的代数理论的研究领域内获得了系列的成果, 并以论文的形式国内外著名刊物《J. Algebra》,《Commun. Algebra》,《Algebra univers.》,《Fund Math》,《Period. Math.》,《Semigroup Forum》,《Theoretical Computer Science》,《Inform. Sci.》等上公开发表60余篇,其中40篇被SCI收录。他受邀访问过美国,韩国,塞尔维亚,香港等国家和地区的一些大学。近年来,他先后主持或参与了国家与省部级项目10项,其中主持了3项国家自然科学基金。已培养出70多名博士与硕士,正在培养的5名博士研究生与7名硕士研究生 其中9人任职副教授和4人任职教授,5人担任学院经理或副经理

 

项目、成果、论文、奖励

  

  • 1.主要课题

      

[1] 国家自然科学基金面上项目,11971383Tropical 矩阵代数的半群和半环理论与2-闭置换群的研究,2020.01-2023.12,52万元,在研,主持。

[2] 国家自然科学基金面上项目,11571278,Tropical矩阵半群和Tropical矩阵群,2016.01-2019.12,50万元,已结题,主持。

[3] 国家自然科学基金地区项目,11261021,AI-半环簇与 Conway 半环簇的究,2013.01-2016.12, 45万元,已结题,主持。(本项目依托单位为江西师范大学,不是白菜网所有网站大全。)

[4]  江西省自然科学基金项目,20142BAB201002,Burnside AI-半环簇的研究,2013.09-2015.12,3万元,已结题,主持。(本项目依托单位为江西师范大学,不是白菜网所有网站大全。)

[5] 江西省自然科学基金项目,2010GZS0093,关于几类半环的研究,2011.01-2012.12,3万元,已结题、主持。(本项目依托单位为江西师范大学,不是白菜网所有网站大全。)

[6] 国家自然科学基金,10471112,半群代数理论,2005.01-2007.12,20万元、已结题、第一参与人。

[7] 陕西省自然科学基础研究计划项目,2005A15,关于几类Conway半环,2006.01-2007.12,1.5万元,已结题,主持。

[8] 陕西省自然科学基础研究计划项目,2003A10,半环的代数理论,2004.01-2005.12,1.5万元,已结题,主持。

 

  • 2.主要论文成果    

      

  • [1] Zhao XZ, Sen MK, On several classes of orthodox Г-semigroups. Jour. Pure Math. (印度),  (1997) Vol. 14: 1-25.

  • [2] Pastijn F, Zhao XZ, Greens D-relation for the multiplicative reduct of an idempotent semiring.  Archivum Math. (捷克、Brno), (2000) Vol. 36: 7-93.

  • [3] Zhao XZ, Shum KP, Guo YQ, L-subvarieties of the  variety of idempotent semirings. Algebra Univers., (2001)  Vol. 46: 7-96 .SCI

  • [4] Zhao XZ, Idempotent semirings with a commutative additive reduct. Semigroup Forum , (2002) Vol. 64: 289-96 .SCI

  • [5] Zhao XZ, Guo YQ, Shum KP, D-subvariety of the variety of idempotent semirings. Algebra Colloq., (2002) Vol. 9: 1-28.SCI

  • [6] Zhao XZ, Guo YQ and Shum KP, Sturdy frame of type (2,2) algebras with appli-cation to semirings.  Fund. Math. , (2003) Vol. 179: 69-81.SCI

  • [7] Zhao XZ, Locally closed semirings and iteration semirings. Monatsh.Math.,  (2005) Vol.144: 157-67.SCI

  • [8] Feng F, Zhao XZ, Jun YB,  *-μ-semirings and *-λ-semirings. Theoretical Computer Science, (2005) Vol.347: 423-431.SCI

  • [9] Ghosh S, Pastijn F, Zhao XZ, Varieties generated by ordered bands I. Order, (2005)Vol.22: 109-128.SCI

  • [10] Pastijn F, Zhao XZ, Varieties of idempotent semirings with  commutative addition. Algebra Univers., (2005) Vol.54: 301-21.SCI

  • [11] Feng F, Jun YB, Zhao XZ, On *–λ-semirings. Information Sciences, (2007) Vol.177: 5012-5023.SCI

  • [12] Feng F, Jun YB, Zhao XZ, Soft semirings. Computers and  Mathematics with Applications(2008) Vol.56: 2621-2628.SCI

  • [13] Zhao XZ, Jun YB, Ren F, The semiring of matrices over a finite chainInformation Sciences, (2008) Vol.178: 3443-3450.SCI

  • [14] Kong XJ, Zhao XZ, A new construction for regular semigroups with quasi-ideal orthodox transversals. J. Aust. Math. Soc. (2009)Vol.86: 177-187.SCI

  • [15] Chen W, Zhao XZ, The Structure of Idempotent Residuated Chains. Czechoslovak Math.J., (2009)Vol.59(134): 453-479.SCI

  • [16] Chen W, Zhao XZ, Guo XJ, Conical residuated lattice-ordered idempotent monoids. Semigroup Forum, (2009) Vol.79: 244--278.SCI

  • [17] Shao Y, Zhao XZ, Locally inverse semigroups with inverse transversals. Jouranl of Mathematical Research and Exposition, (2009) Vol.29(4): 599-606.

  • [18] Shao Y, Zhao XZ, Partial orders on right inverse semigroups, Chinese Quarterly Journal of Mathematics, (2009)Vol. 24(2): 194-199.

  • [19] 邵勇, 赵宪钟,半格序Clifford半群,数学进展,2010年第1  59-63.

  • [20] Chen YZ, Zhao XZ, Yang L, On n × n Matrices over a Finite Distributive Lattice. Linear and Multilinear Algebras, (2012)Vol. 60(2): 131-147.SCI

  • [21] Tian J, Zhao XZ, Representations of commutative asynchronous automata. J.Comput.Syst. Sci., (2012)Vol.78(2): 504 -516.SCI

  • [22] Chen YZ, Zhao XZ, On Linear Operators strongly preserving invariants of Boolean Matrices. Czechoslovak Mathematical Journal, (2012)Vol. 62: 169-186.SCI

  • [23] Shao Y, Zhao XZ, Semirings which are distributive lattice of M-rectangular divided semirings. Algebra Colloquium, (2013)Vol.20(2): 243-250.SCI

  • [24] Chen YZ, Zhao XZ, Guo XJ, On several classes of additively non-regular C-semirings. Publ. Math. Debrecen, (2013)Vol. 83 (4), 517-536.SCI

  • [25] Gan AP, Zhao XZ, Glonal Determinism of Clifford semigroups. J. Aust. Math. Soc., (2014)Vol.97(1): 63-77.

  • [26] Fu YY, Zhao XZ, The Closed subsemigroup of Clifford semigroup , Communications in Mathematical Research,  (2014)Vol. 30(2), 97—105.

  • [27] Xu H, Tian J, Zhao XZ, Monoid-matrix type automata. Theoretical Computer Science, (2014)Vol.520: 1-10. SCI

  • [28] Chen YZ, Zhao XZ, On Decompositions of Matrices over Distributive Lattices. Journal of Applied Mathematics (2014), Vol. 2014, Article ID 202075, 10 pages

  • [29] Ren MM, Zhao XZ, On free Burnside ai-semirings. Semigroup Forum, (2015)Vol.90(1):174-183SCI

  • [30] Chen YZ, Zhao XZ, On upper triangular nonnegative matricesCzechoslovak Mathematical Journal, (2015)Vol. 65 (140) , 1–20. SCI

  • [31] Gan AP,  Zhao XZ, Ren MM, Global determinism of semigroups having regular globals, Period Math Hung, (2016) Vol.72:12–22. SCI

  • [32] Gan AP,  Zhao XZ, Shao Y, Globals of idempotent semigroups, Communications in Algebra,  (2016)Vol.44: 3743—766. SCI

  • [33]  Ren MM,  Zhao XZ, Shao Y, On a variety of Burnside ai-semirings satisfying xn x, Semigroup Forum, (2016) Vol.93:501–515. SCI

  • [34] Tian J, Shao Y, Zhao XZ, Out Subword-Free Languages and Its Subclasses, International Journal of Foundations of Computer Science, (2016) Vol. 27(3) : 305–326. SCI

  • [35]  Ren MM, Zhao XZ, The varieties of semilattice-ordered semigroups satisfyingx3 x and xy yx, Period Math Hung, (2016) 72:158–170. SCI

  • [36] Yu BM,  Zhao XZ,  Gan AP, Global determinism of idempotent semigroups, Communications in Algebra, (2017) ( Online) DOI: 10.1080/00927872.2017.1319474

  • [37] Zhao XZ,  Gan AP,  Yu BM, Global determinism of normal orthogroups, Semigroup Forum, (2017) Vol.94:336–370. SCI

  • [38] Ren MM, Zhao XZ, Wang AF, On the varieties of ai-semirings satisfying 3 x, Algebra Univers. ,  (2017) Vol.94: 395408. SCI

  • [39] Yu BM Zhao XZ, Zeng LL, A congruence on the semiring of normal tropical matrices, Linear Algebra and its Applications, (2018) Vol.555: 321335. 【SCI】

  • [40] Yu BMZhao XZ, Gan AP, Global determinism of idempotent semigroups,Communications in Algebra, (2018) Vol.46(1): 241-253. SCI

  • [41] Yu BMZhao XZ, The bands satisfying the strong isomorphism property, Semigroup Forum, (2019)Vol. 98:327337. SCI

  • [42]  Ren MM, Zhao XZ, Shao Y, The lattice of aisemiring varieties satisfying xn x and xy yx, Semigroup Forum (2020) Vol. 100: 542–567. SCI

  • [43] Jacksona M, Ren MM, Zhao XZ, Nonfinitely based ai-semirings with finitely based semigroup reducts, Journal of Algebra, (2022)Vol.611: 211–245. SCI

  • [44] Deng WN, Zhao XZ, Cheng YL, Yu,BM, On the groups associated with atropical n ×n matrix, Linear Algebra and its Applications (2022) Vol. 639: 1–17.

  •  

    3.获奖情况    

     

    1. 半环代数理论的若干研究,陕西省教育厅,2019年度陕西省科学技术奖, 二等奖,  排名第一。

    2. 半环代数理论的若干研究,陕西省教育厅,陕西高等学校科学技术奖,一等奖,排名第一  
    3. 狠抓“三基、两论、一书”,陕西省教育厅,1997年陕西省普通高等学校教学成果奖,二等奖,排名第三。  

     

  •